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SUMMARY

I This paper shows how a two-dimensional crack element was implemented into

NASTRAN as a user dummy element and used to study failsafe characteristics of the
C5A fuselage. The element is formulated from Reissner's functional requiring that it

satisfy comparability with the linear boundary displacement elements in NASTRAN.

Its accuracy is demonstrated by analyzing for the stress intensity factors of two simple
crack configurations for which there are classic solutions.

INTRODUCTION

A Lockheed requirement during the design of the C5A was for the pressurized

fuselage structure to have the capability of sustaining a longitudinal crack in the skin.
Circumferential straps are attached to the skin midway between the frames to provide

this capability. Conventional methods for designing the straps and the system for
attaching them to the skin are conservative and as a result dictate the use of high strength

fasteners. It is now possible, due to the introduction of special crack tip singularity

elements, to make a finite element analysis which eliminates much of this conservatism,

Part of the criterion for determining if a crack can be arrested is to find a

configuration for which the stress intensity factor at the tip of the crack is lower than

the critical stress intensity factor for the skin material. NASTRAN was considered the
best analysis tool with which to analyze the various crack configurations. This was due

to the ease with which a crack element can be incorporated into it as a user dummy
element.
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Poisson's ratio
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SINGULARITY CRACK ELEMENT FORMULATION

In this section the stiffness matrix and the relationship between the nodal

displacements and the stress intensity factors for a crack element are developed.

Reissner's functional, Reference 1, for a region subdivided by boundaries D into
finite elements gives

(1) Jn  t/vE ]Wc(a,x) - F, //_ + ½ o'_x(//_,=c +//x,_)

./ Sl_

dv

where the summation includes all the finite elements making up the region

If the displacements of the surfaces D are assumed compatible between finite

elements, then the necessary conditions for JR to be stationary due to a variation

in the functions a_x , and M_ are the following five Euler equations:

(2) bW¢ = ½(,u..r +/4x, , ) in V (Hook's Law)
be

(3) a=x,x+ F, = 0 in V (Equilibrium Equations)

(4) a_x r/e= _ on So (Traction boundary condition)

(5) M_ = P_ on S/j

(6) < O'¢xr/x> = 0 on D

(Displacement boundary
condition)

(Stress continuity between
elements)

In which Wc has the property bW¢ = e=x

- b a,x
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A modified form of (1) is obtained by neglecting body forces and restricting

the functions o'_ and /_t to the set which satisfy (3), (4), and (5)

(8)

For this form of the functional the displacements /t t only appear in the boundary

integrals and hence do not have to be defined in the interior of the element.

In applying J1 to the finite element shown in Figure 1 the stresses o'_ are
approximated by finite series and the displacements /It are required to vary linearly

between nodal displacements t Q } • This ensures displacement compatibility with
the linear boundary displacement elements already in the NASTRAN system. Expressing

these approximate functions in matrix form

(9) 1o } : E P] I_} stresses in V

(,o)I.o}--ELo]IQ} displacements of the surface D

(11) {To} = [P0] {_} o,_r/, at the surface D

where E P ] are the assumed series of stress functions and l ,8 } are the corresponding

coefficients, ELD] are linear interpolations of the nodal displacements {Q}{ alingthe boundary D, and r- p'_ are the values of L P ] that give the stresses a inL_ u.j
Equation 9 normal to the boundary D. The stresses on the boundary Su do not ave

to be defined as there are no enforced boundary displacements associated with this
element.
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Substituting (9), (10), and (11) into (8) gives the contribution of the crack element
to J.

c,=) t + }

where

Due to the fact that the coefficients,{.8 } , are independent between elements the

necessary condition for glc to be stationary is bJlc 0 . This yields:

(15)
-1

Substituting (15) into (12) and finding a stationary value of Jlc with respect to { Q }
give the contribution of the crack element to the total stiffness matrix

Each term in the series used to approximate the stresses has to satisfy equilibrium
and the stress boundary conditions. The series also has to include the known stress

singularity near the tip of the crack. The form that has been assumed for this element

is that which was developed from the Williams series of stress functions by Aberson and
Anderson in Reference 2. The two dimensional stress distributions in polar coordinates
are:

185



(17) 9{--E #Sn
n..1

n/4 ;/2- 1 I_(n+2 )Cos(n/2+ 1)0 + f (n)tn- 6)Cost n,'_- 1)0] }

"+E "SAn n/_ Rnj2-1 g(n)(n

n--1,3

+1 )Sin(n/2 +1)0-(n- 6)Sin(n_-1 )01}

(18)

and

9 { n/2-1=E ,_Sn n/_ R
n= I

fn+2)Cos(n/2 + 1 )0-f(n )Cos (n/_-1)0(n+2] }

+E ,SAn n/_R n/_'-I g

I1" 1,3

(n)(n+2)Sin(n/2 + I)0 + (n + 2)Sin(n/2-1 )01}

(19) •re#( R, 0 )

9

:E
n=.1

_Sn{n/_ Rn/2- l_n+2)Sin(n/2+l)O-f(n)(n-2)Sin(n/2-1)O] }

' { E._'E "SAn n/4 ;/2-I (

n:1,3

n)(n +2)Cos(n/_ + 1)0- (n-2)Cos(_/2-1)01}

in which

f(n)
n/2+1

n_ +(_1) n

and

g(n ) =
n/_ _ (_i) n

n/_+l

where _5 n and ,8Anare the symmetric and antisymmetric parts of {/_ }.
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The symmetricl_nd antisymmetric coefficients /_S 1 and _A 1 are associated with
the singularity R-y2 . They are related to the opening and sliding mode stress

intensity factors K1 and Kll by the following formulas

(20) K1 -- 3 / Sl

(2]) K n = _ _A 1

Hence once the displacements t Q } have been determined the leading coefficients

_Aland _S 1 can be recovered through (15)and subsequently the stress intensity

factors through (20) and (21).

IMPLEMENTING THE CRACK ELEMENT INTO NASTRAN

The nine node crack element has been implemented into NASTRAN through the
dummy element capability. This capability permits a user to enter his own element

subroutines for the purpose of generating the stiffness and mass matrix contributions,

the thermal load contributions and for the computation of various stresses and forces

for output (see section 8.8.5 of the NASTRAN PROGRAMMERS MANUAL, Reference

3). This procedure is relatively simple compared to adding an entirely new element
to the system.

The crack element has been implemented as a DUM2 element. The format for the

ADUM2, CDUM2, and PDUM2 bulk data cards which are used to enter the geometry,
property, and connectivity data is shown in Figure 2. The procedure used to
implement the element is as follows.

O Create an element stiffness subroutine KDUM2 which computes and outputs

to functional module SMA] one 6 x 6 matrix for each connecting grid point
with respect to the connective pivot point.

O Create two subroutines SDUM21 and SDUM22 to compute and output to
functiona! module SDR2 the stress intensity factors.
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Remap LINK3 to include the new routine KDUM2 and LINK13 to include
the new routines SDUM21 and SDUM22.

All the element stiffness subroutines called by SMA1, including KDUM2, are

overlayecl. Therefore to avoid reducing the working core available to SMA1, KDUM2

was programmed in less core than the largest amount used by any of the existing element

stiffness routines. To do this it was necessary to fix the shape of the element shown in
Figure 1. Chosen was a square with the nine grid points equally spaced around the

boundary. This made it possible to compute the integrations involved in (13)

and (14) externally to NASTRAN for a unit element size. Further (13) was
integrated for a unit value of each of the two independent coefficients for an isotropic
material in the compliance matrix iS 7 i.e.

L J

Es s[ii]0020
where

$1 = I/2G

-U/2 G PLANE STRAIN
S2 =

-u/2 G(1 + U) PLANE STRESS

resulting unit matrix for r'nLKAJ and the two unit matrices for [K,C]The

permanent data in the subroutines KDUM2 and SDUM2I.

are used as

Subroutine KDUM2 forms the matrices [KA] and [KC] in double precision from

the three unit matrices for a specific element size and material. It then uses these in

(16) to compute the 2 x 2 stiffness matrices in the local element coordinate

system for each grid point associated with the respective connective pivot point. Finall:y
it transforms these 2 x 2 matrices into 6 x 6 matrices in the global coordinate system.
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Similarly subroutine SDUM21 forms the matrices [KA] and [KC] in single

precision for a specific element size and material. It then computes the two stress

intensity factors K1 and I_ for a unit value of each of the grid point displacements
{ Q } in the global system using 15, 20, and 21. Subroutine SDUM22

computes the final stress intensity factors for specific grid point displacemerts.

ELEMENT EVALUATION

The capability of the element to predict accurate stress intensity factors has been

demonstrated by numerous analyses. Two are presented here for which there are
known classic solutions.

The opening mode stress intensity factor for an isotropic materia! can be expressed
in the form, Reference 4.

(22) K 1 = e_/-E'_a f

Where a _ is the stress intensity factor for a central crack of length 2a

in an infinite plate loaded by a far field stress a acting normal to the crack, f

is either the correction factor associated with Bowie's analysis for the presence of a

hole, Reference 5, or Isida's analysis for a finite width plate, Reference 6.

The finite element model shown in Figure 3 represents a crack in a finite width

plate loaded by a far field stress acting normal to the crack. The plate is 81 cm
wide 168 cm long and the crack length is varied between 10 and 51 cm. The

model which idealizes one quarter of the plate represents the full structure thru the use

of symmetric boundary constraints. The crack element which overlaps a symmetry
boundary is forced to deflect symmetrically thru the use of multi-point constraint

equations. It should be noted that when the multipoint constraint equations are used in

this way the element that is being forced to act symmetrically should be specified with
half its actual thickness. Besides the DUM2 crack element the model consists of 66

CQDMEM elements, and 36 CTRMEM elements. It has 124 grid points, 219 active
freedoms, and a semiband width of 37. Figure 3 shows that for this type of

idealization the crack element computes the stress intensity K I to within 3% of that
given by equation (22).
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The finite element model shown in Figure 4 represents symmetric cracks protruding

from a hole in the center of an infinite plate. The plate is 102 cm wide and 102 cm

long. The hole has a diameter of 5 cm and the crack lengths are varied

between 0.8and 8 cm . The model uses the same idealization techniques employed

in the previous example to represent the plate. It consists of 154 CQDMEM elements,
5 CTRMEM elements and one DUM2 crack element. Figure 4 shows the results to be

within 3% of equation 22.

C5A FAILSAFE ANALYSIS

The C5A fuselage has a failsafe criterion which requires that a 30 cm longitudinal
crack in the cover skin will not result in a catastrophic failure when the structure is

subjected to a normal operating internal pressure. To satisfy this requirement,
circumferential failsafe straps are attached to the skin mid way between the frames for

the purpose of arresting such a crack, see Figure 5. An analysis based on Lockheed
data sheets is conservative and as a result dictates the use of expensive high strength

fasteners to attach the strap to the skin. The following analysis using NASTRAN shows

that less expensive aluminum rivets can be used instead.

As a longitudinal skin crack passes under the failsafe strap the stress intensity at

the tip reduces. The crack will cease to propagate if the stress intensity becomes less

than the critical stress intensity for the material, provided that the fasteners in the

strap do not fail first. The finite element model shown in Figure 6 represents a typical
region of the C5A aft fuselage. It considers the frame at fuselage station (F.S.) 1804

to be failed and is used to analyze various lengths of a skin crack which propagates
towards the failsafe straps at F.S.'s 1794 and 1814. The model is two-dimensional,i.e.

fuselage curvature and out of plane deflections are ignored. Advantage has been taken

of two symmetry planes by idealizing only one quarter of the actual damaged region.
The crack element which lies across a symmetry boundary is again forced to displace

symmetrically through the use of multi-point constraint equations. The frame cap and
the skin are represented as an integral structure through the use of CROD,CTRMEM,
CQUAD, and the CDUM2 elements. The strap which is considered as a separate unit
uses the CTRMEM and CQUAD elements. The twelve fasteners closest to the crack are

each idealized by a system of CROD elements. The remaining fasteners are lumped into
groups of approximately 4 and idealized by CELASI elements. The model is loaded by

concentrated forces which represent the hoop loading on a 244 cm radius structure for a

normal operating internal pressure with a dynamic factor of 1.15. The loading is
applied to the model in proportion to the circumferential cross sectional area. This
does not represent the true circumferential loading as it neglects the bulging effect of
the skin between the frames. It is conservative however in that it overloads the frame

at the center of the crack.
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In order to show the fasteners capable of carrying the transfer load it is
necessary to consider the nonlinear load deflection response for the twelve fas-
teners closest to the crack, see figure 7. Because the CELASI elements do not
have the capability of representing nonlinearity it was necessary to idealize

ithese fasteners by the system of CROD elements shown in Figure 8. The rods con-
nect the coincidental grid points A and B on the skin and strap respectively
through the grid point C. The elements have a combined length of 2.54 cm (I in.)
and a cross-sectional area of 6.45 cm2 (i in2). The use of English units allows

the load deflection curves in Figure 7 to be input directly on Tables I cards as
a stress strain curve for the rod elements. The only other region of the struc-

ture to experience plasticity is the tip of the crack and since this is ignored
:in linear fracture mechanics the most economical way of executing the analysis
_is to divide the model into two substructures: the skin, frame, and strap being
included in substructure I and the fasteners in substructure 2. Substructure I
is analyzed first for an increment of the external loads using rigid format I.
The freedoms for the grid points common to the fasteners are included in the
'A' set and the rigid format altered to terminate once the reduced A set stiff-
ness and loads matrices are formed. Substructure 2 is then analyzed using rigid
format 6, the piecewise linear analysis. Rigid format 6 is altered to read the
A set stiffness and loads matrices for substructure I and add them to the appro-
priate terms in the G set stiffness and loads matrices for substructure 2. The
results of the piecewise linear analysis give the desired fastener loads. To
obtain the stress intensity factor it is necessary to restart the analysis for
substructure I using the A set displacements resulting from the analysis of
substructure 2.

Substructure 1 consists of one CDUM2, 56 CROD, 71CTRMEM and 814 CQDMEM
elements. It has 952 grid points, 1876 active freedoms and a semiband width
of 84. There are 136 freedoms in the A set for which it took 31CPU minutes,
on a UNIVAC 1106 computer executed in a time sharing mode, to form the reduced
stiffness and loads matrices. Substructure 2 consists of 56 CELASI elements and

24 CROD elements. It has 80 grid points, 148 active freedoms and a semiband
width of 142. It took I0 iterations to obtain the elastic-plastic solution
using 14 CPU minutes. The back feed into substructure i to obtain the stress
intensity factor ran for 8 CPU minutes. All the above run times are for
Level 15.1.

The analysis has been made for both the original 3.2 mm (1/8 in.)
YBO TAPERLOKS and the proposed 4.0 mm (5/32 in.) aluminum rivets. Four crack
lengths were considered for each system, the results being plotted in Figures 9
and i0 respectively. They show the ratio of the stress intensity to the critical
stress intensity (KI/Kc) and the ratio of the maximum fastener load to the allow-

able fastener load (P/Pa) plotted against the half crack length. Figure 9 shows
that when the TAPERLOKS are used the stress intensity reduces to the critical
value at a half crack length of 22 cm. At this length the fasteners are only
working to 40% of their allowable load; hence they are shown to provide the
necessary failsafe characteristics. This is only to be expected as the more
conservative Lockheed data sheets also show the TAPERLOKS capable of arresting
the crack. Figure I0 shows that when the rivets are used the stress intensity
reduces to the critical value at a half crack length of 24 cm. At this length
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the rivets are working to 67% of their allowable load therefore, unlike the con-
ventional analysis, this analysis shows that they also are capable of providing !
the necessary failsafe characteristics. This analysis was validated by a test
program which demonstrated that the rivets are capable of arresting the skin
crack.

CONCLUSION

The NASTRAN capability of allowing a user to implement a dummy element was

found to be relatively simple to use and exceedingly useful. Lockheed Georgia

Company has plans to implement more elements into the system• In particular work is

underway on a fastener element, similar to CELAS1, that has the capability of
representing a non linear load deflection curve•

I •
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Figure 1,. Nine Node Crack Element
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Figure 2. Bulk Data Cards For a DUM2 Crack Element
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DUM2 CRACK ELEMENT
/
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Figure 6. NASTRAN Model of a C5A Fuselage Skin Crack
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3.2 mm YBO TAPERLOKS

4.0 mm ALUMINUM RIVETS

Figure 7,
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Figure 8,, Fastener Idealization
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Shown in Figure 6 for 3.2 mm TAPERLOKS.
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Figure i0. NASTRAN Results From the Finite Element Model

Shown in Figure 6 for 4.0 mm Aluminum Rivets.
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